ФИЛЬТРАЦИОННЫЕ ТЕХНОЛОГИИ В ФАРМПРОИЗВОДСТВЕ

Стерилизующие фильтры для водоподготовки и асептического розлива ЖЛС ОБНИНСКИЕ ФИЛЬТРЫ ЭКСПРЕСС•ЭКО

- Астахова А.Ю., к.б.н., заместитель гендиректора Группы компаний «Обнинские Фильтры»
- Царин П.Г., Генеральный директор ООО «НПП Эко-Фильтр»
- Колганов И.М., к.т.н., заведующий лабораторией 000 «Обнинские фильтры»
- Горобец С.В., заместитель генерального директора по науке и технологиям 000 «Обнинские фильтры»
- Дымова А.А., ФГУП ГНЦ РФ Институт медико-биологических проблем РАН, старший научный сотрудник

В настоящее время Группа компаний «Обнинские Фильтры» предлагает фармацевтическим предприятиям широкий ассортимент микрофильтрационного оборудования, созданного на базе собственных разработок. В 2019 году предприятие существенно расширило ассортимент мембранных фильтроэлементов, а также провело работы по постановке методик тестирования как гидрофильных, так и гидрофобных фильтроэлементов на задержание Brevundimonas Diminuta.

Многолетняя работа специалистов предприятия по созданию мембран на основе PTFE увенчалась началом серийного производства стерилизующих мембранных фильтров с размером пор 0,2 мкм с характеристиками, не уступающими ведущим мировым лидерам (Таблица 1). Мембранные фильтроэлементы протестированы на удерживающую способность по отношению к Вг. diminuta в соответствии с ОФС.1.1.0016.15 ГФ XIV «Стерилизация». Протоколы, свидетельствующие о соответствии мембранных элементов требованиям ОФС, составляют Фото 1. Дыхательный фильтр основу Руководства по валидации (Паспорта Качества) мембранных элементов.

Специалисты предприятия оказывают консультационную помощь при подборе корпусного оборудования, а также разработке конструктивов, соответствующих пожеланиям заказчиков, учитывающих особенности проведения процедур поверки, стерилизации, возможности подключения к различным технологическим сетям. Учитываются не только диаметры и стандарты трубопроводов и арматуры, но и различные варианты установки оборудования. Особенно это относится к дыхательным фильтрам, устанавливаемым на емкости хранения ВДИ и ВО. Практически каждый держатель проектируется с учетом индивидуальных требований. В зависимости от скорости скачивания воды предлагаются держатели под элементы от 60 мм высотой до многопатронных 8-12 местных держателей, в том числе снабженных системами обогрева для удаления конденсата (Фото 1 и 2).

Поверка газовых гидрофобных фильтров на целостность может быть проведена с помощью тестирования по величине диффузного потока или «точке пузырька», а также по давлению продавливания воды (WIT).

Первый способ может быть осуществлен только при извлечении фильтроэлемента из держателя и тестирования его

Фото 2. Многопатронный дыхательный фильтр с обогревом

в специально подготовленной системе, так как подразумевает заполнение объема держатели и фильтра водно-спиртовой смесью. Чаще всего используется смесь изопропанола и воды в соотношении 60:40 или 70:30. Непосредственно in situ можно провести поверку на целостность фильтра по WIT, так как достаточно измерять только поток воды через сухой фильтрующий элемент. Для проведения теста не в автоматическом режиме необходимо залить в фильтродержатель объем воды, обеспечивающий полное покрытие фильтрующего элемента в фильтродержателе и добавить объем жидкости, необходимый для заполнения пор и пустот под давлением и проведения самого тестирования. При этом должен оставаться свободный объем, который необходим для расчета величины интрузии. Для проведения тестирования в автоматическом режиме необходимо наличие фильтродержателя с предустановленным объемом газа над погруженным в воду фильтрующим элементом, либо специализированное оборудование.

Также можно проводить определение целостности фильтрующего элемента по тестовому аэрозолю. Однако необходимо учитывать, что данный способ рекомендован PDA для использования в случаях, где нет прямого контакта между фильтруемым газом и стерильным продуктом или поверхностями.

Для фильтрации воды в отделениях водоподготовки производится широкий спектр фильтроэлементов как для предфильтрации воды в качестве барьерных фильтров, так и для стерилизующей фильтрации воды на уровне 0,2 мкм. Мембранные фильтры на основе полиэфирсульфона мы производим уже в виде трех модификаций - от симметричной мембраны до высокоэффективной асимметричной, с подтвержденным LRV≥7 (величину логарифма снижения микробиологической нагрузки, англ. LRV - Log Reduction Value). Также мы возобновили производство фильтроэлементов на основе полиамида (найлона 6,6), причем очень высокого качества, выдерживающих стерилизацию в линии при температуре 124°C

в течение 30 минут не менее 20 циклов. Помимо перечисленных фильтров мы начали производство нового для нас изделия – фильтры на основе найлона 6,6, с дзета-потенциалом, предназначенные для удаления пирогенов из воды.

Мембранные гидрофобные и гидрофильные фильтры могут использоваться и при асептическом розливе ЖЛС. Для снижения биологической нагрузки на стерилизующие мембранные фильтры производятся мембранные фильтры ЭКОПОР-РЕЅ и ЭКОПОР-РА с размером пор 0,45 и 0,65 мкм, а также фильтроэлементы на основе широкого спектра полимерных материалов с номинальным рейтингом фильтрации от 0,5 до 20 мкм (Фото 3). В 2019 году была произведена модернизация линии по производству гофрированных фильтроэлементов, что позволило существенно повысить их качество и добиться соответствия стандартам Госфармакопеи РФ. Все фильтроэлементы поставляются с протоколами, подтверждающими их соответствие заявленным характеристикам и Паспортом Качества (Руководство по валидации).

Для фильтрации жидкостей выпускается широкий ассортимент фильтродержателей из нержавеющей стали фармацевтического качества, а также фильтрационных установок, разработанный в соответствии с требованиями URS заказчиков (Фото 4).

Мы готовы оказать консультационную помощь при решении задач очистки газов и жидкостей в соответствии с нормами Госфармакопеи РФ.

> Наш адрес: 249030, Калужская обл.,г. Обнинск, Киевское шоссе, 109 км, зд. 19

Фото 3. Мембранные фильтры ЭКОПОР

Фото 4. Держатели жидкостные ДФП-201

Таблица 1 Сравнение характеристик гидрофобных фильтроэлементов с ПТФЭ мембраной 0,2 мкм высотой 250 мм производства ГК «Обнинские фильтры» с зарубежными аналогами

Характеристики	Торговая марка / производитель				
	ЭФП-525-М / ГК «Обнинские фильтры»	Sartofluor / Sarto- rius	High Flow TET- POR II / Parker	Aervent / Merck Millipore	Emflon / Pall
Площадь фильтрации, м ²	0,7	0,75	0,9	0,65	0,8
Производительность по воздуху, м³/(ч·кПа)	9	13	10	11	12
Давление точки пузырька в смеси (изопропанол/вода), бар, не менее	1,05 (70/30)	1,0 (60/40)	1,0 (60/40)	1,1 (70/30)	1,1 (60/40)
Диффузионный поток (в смеси изопропанол/вода) при тестовом давлении	<20 мл/мин при 0,7 бар	<6 мл/мин при 0,7 бар	<16,5 мл/мин при 0,8 бар	< 24 мл/мин при 0,97 бар	<15 мл/мин при 1,04 бар
Продавливание воды (Water Intrusion Test)	<13мл /10 мин при 2,5 бар	<13мл /10 мин при 2,5 бар	<13,5мл /10 мин при 2,5 бар	<7,5мл /10 мин при 2,6 бар	<3,3мл/10 мин при 2,5 бар
Не выделение волокон	Соответствуют FDA 21CFR.210.3 (6)				
Биологическая совместимость материалов	Cooтветствуют USP Biological Reactivity, In Vivo, Class VI-121 °C plastics				
Удержание бактерий Brevundimonas diminuta (ATCC 19146)	LRV не менее 7 при нагрузке не менее 10 ⁷ KOE/cм², в соответствии с ASTM F 838				
Бактериальные эндотоксины	<0,25 ЕU/мл	<0,25 EU/мл	<0,25 EU/мл	<0,5 EU/мл	<0,25 ЕU/мл
Количество циклов стерилизации при температуре	>100 при 140°C, 30 мин	>150 при 134°C, 20 мин	>225 при 142°C, 30 мин	>100 при 145°C, 30 мин	>165 при 142°C, 60 мин

Список литературы:

^[1] Государственная ФАРМАКОПЕЯ Российской Федерации XIV издание, сайт Федеральной электронной медицинской библиотеки - http://femb.ru/femb/ pharmacopea.php

^[2] Приказ Минпромторга России от 14.06.2013 N 916 (ред. от 18.12.2015) «Об утверждении Правил надлежащей производственной практики» (Зарегистрировано в Минюсте России 10.09.2013 N 29938).